Novel Deuteration via Acetylene Bond Migration

Seiichi TAKANO, * Yoshinori SEKIGUCHI, Youichi SHIMAZAKI,
Michiyasu TAKAHASHI, and Kunio OGASAWARA
Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980

Optically active terminal- β , γ -acetylenic alcohol rearranges to β -trideuteriomethyl- α , β -acetylenic alcohol, an useful chiral building block for the synthesis of a variety of natural products, on exposure to potassium \underline{t} -butoxide in dimethyl sulfoxide- d_6 .

Recently we reported the synthesis of some potentially useful chiral building blocks $^{1)}$ bearing a secondary methyl group from the optically active terminal- β , γ -acetylenic alcohol 1 via the base induced triple bond migration as key stage. $^{2)}$ In the reaction, terminal β , γ -acetylene bond of 1 was smoothly migrated to the α , β -position to give the internal acetylenic alcohol 2 without loss of the original chiral integrity when it was briefly treated with potassium \underline{t} -butoxide in dimethyl sulfoxide. $^{2)}$ The chiral acetylene 2 was then converted selectively into the allyl alcohols, $\underline{\text{cis}}$ -3 and $\underline{\text{trans}}$ -4, which were successfully transformed into the chiral building blocks for the synthesis of a variety of natural products. $^{1)}$ We describe here a novel synthesis of this important key acetylenic precursor 2 in a trideuterated form from the non-deuterated alcohol 1 employing the same triple bond migration.

Treatment of the terminal acetylenic alcohol $^{1)}$ 1, prepared in 89% yield from $(S)-\underline{O}$ -benzylglycidol, $^{3)}$ with two equivalents of potassium \underline{t} -butoxide in dimethyl sulfoxide- d_6 (DMSO- d_6) at room temperature for 2 h afforded a deuterated internal acetylene 2 in 82% yield after exposure to diluted hydrochloric acid. Complete triple bond migration occurred under these conditions, however, deuterium incorporation of the product was found to be 54%. When the reaction was quenched by

1906 Chemistry Letters, 1987

deuterium oxide in place of diluted hydrochloric acid, the incorporation was a little raised to 63%.

$$\underline{1} \xrightarrow{\underline{t}-KOBu} CD_3 \xrightarrow{\underline{t}-KOBu} \underline{\underline{t}-KOBu} \\
\underline{DMSO-d_6} \\
\underline{then D_2O} \underline{\underline{2}-d_3} \\
\underline{Scheme 2.}$$

Table 1. Deuterium Incorporation of 2-d2

Entry	Substrate	Amount of base (equiv.)	Work-up	Yield/%	Deuterium incorporation ^{a)} /%
1	1	2	D ₂ O	82	63
2	1	2	10%HCl	80	54
3	1	4	D ₂ O	84	84
4	1	6	D ₂ O	84	85
5	1	8	D ₂ O	89	93
6	1	8	10%HCl	86	80
7	1	10	D ₂ O	79	92
8	2	2.5	D ₂ O	67	50
9	2	8	D ₂ O	78	92

a) Determined by 'H-NMR (90 MHz).

No significant improvement was observed by exposure of 1 to two equivalents of \underline{n} -butyllithium prior to treatment with potassium \underline{t} -butoxide. It was finally found that the incorporation was greatly affected by amounts of the base used and when 1 was exposed to eight equivalents of potassium \underline{t} -butoxide at room temperature for 2 h, the rearranged product 2 containing 93% of deuterated product 2-d₃ was obtained in 89% yield after quenching with deuterium oxide (Table 1).

Interestingly, it was also found that facile deuterium incorporation occurred with the internal acetylene 2 under the same conditions. When 2 was exposed to two equivalents of potassium \underline{t} -butoxide, 50% deuterium incorporation was observed and was raised to 90% with eight equivalents of the base.

A typical procedure is as follows: To a solution of (R)-5-benzyloxy-4-hydro-xypent-1-yne 1 (503 mg, 2.65 mmol) in DMSO-d₆ (99.9%, 3 ml) was added potassium \underline{t} -butoxide (2.37 g, 21.16 mmol) portionwise with stirring at room temperature under argon. After stirring for 2 h at room temperature, the mixture was treated with deuterium oxide (99.8%, 5 ml) at 0 °C and was extracted with benzene (3 x 20 ml). The extract was washed (5% aq. NaHCO₃ and brine), dried (MgSO₄), and evaporated. The residual oil was purified by silica gel chromatography (20 g, hexane/Et₂O 4:1) to give 2-d₃ (454.3 mg, 89%) as a colorless oil: $[\alpha]_D^{24}$ +4.30° (c 1.11, CHCl₃). ¹ H-NMR (CDCl₃): δ 7.32 (s, 5H), 4.58 (s, 2H), 4.72-4.38 (m, 1H), 3.72-3.37 (m, 2H), 2.43 (brs, 1H, exchangeable), 1.88-1.68 (m, 0.21H).

References

- 1) S. Takano, Y. Sekiguchi, and K. Ogasawara, J. Chem. Soc., Chem. Commun., <u>1987</u>, 555.
- 2) S. Takano, Y. Sekiguchi, N. Sato, and K. Ogasawara, Synthesis, 1987, 139.
- 3) S. Takano, M. Akiyama, and K. Ogasawara, Synthesis, 1985, 503.

(Received June 30, 1987)